Functional Coefficient Regression Models for Nonlinear Time Series: A Polynomial Spline Approach
نویسندگان
چکیده
We propose a global smoothing method based on polynomial splines for the estimation of functional coefficient regression models for nonlinear time series. Consistency and rate of convergence results are given to support the proposed estimation method. Methods for automatic selection of the threshold variable and significant variables (or lags) are discussed. The estimated model is used to produce multi-step-ahead forecasts, including interval forecasts and density forecasts. The methodology is illustrated by simulations and two real data examples.
منابع مشابه
Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملAccounting seasonal nonstationarity in time series models for short-term ozone level forecast
Due to the nonlinear feature of a ozone process, regression based models such as the autoregressive models with an exogenous vector process (ARX) suffer from persistent diurnal behaviors in residuals that cause systematic over-predictions and under-predictions and fail to make accurate multi-step forecasts. In this article we present a simple class of the functional coefficient ARX (FARX) model...
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملSharpening P-spline signal regression
We propose two variations of P-spline signal regression: space-varying penalization signal regression (SPSR) and additive polynomial signal regression (APSR). SPSR uses space-varying roughness penalty according to the estimated coefficients from the partial least-squares (PLS) regression, while APSR expands the linear basis to polynomial bases. SPSR and APSR are motivated in the following two s...
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004